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Abstract. Growing demand for mobile access to data is only outpaced by the 

growth of large and complex data, accentuating the constrained nature of mobile 

devices. The availability and scalability of cloud resources along with techniques 

for caching and distributed computation can be used to address these problems, 

but bring up new optimization challenges, often with competing concerns. A user 

wants a quick response using minimal device resources, while a cloud provider 

must weigh response time with the monetary cost of query execution. To address 

these issues we present a three-tier mobile cloud database model and a decisional 

semantic caching algorithm that formalizes the query planning and execution be-

tween mobile users, data owners and cloud providers, allowing stake holders to 

impose constraints on time, money and energy consumption while understanding 

the possible tradeoffs between them.  We use a hospital application as a user case. 

Keywords: mobile, cloud, energy consumption, monetary cost, cache. 

1 Introduction 

 The main principle of mobile computing is the possibility to provide to the user 

resources independent of his/her location. A mobile device has the advantage of being 

light and easily transportable, but has constraints on its limited resources, such as 

memory, computing power, screen size, network connection and energy. Those con-

straints are even more important when they are compared to the resources available on 

a server, and even more with a computation service on the cloud with elastic resources 

[1].When the mobile device’s lack of resources becomes critical, using cloud services 

becomes necessary to answer to the user constraints. 

On the cloud, the different pricing models used by the cloud service providers bring 

a new challenge for the management of the resources, which is to solve a two-dimen-

sional optimization problem concerning two constraints: query execution time and 

monetary cost that the cloud service tenants must pay to the cloud service providers. 

On the mobile device, one of the most important resources for its users is the remaining 

battery life. The remaining energy can be used either to evaluate queries or to check the 
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results. Therefore, this adds up a third dimension to the optimization problem: the mo-

bile device’s energy consumption. Also, in order to reduce network communication 

between the user and the cloud, which consequently reduces the query processing time, 

we can use a cache system [2] called semantic caching. A cache system allows previ-

ously processed data to be stored. Those data can be computed or downloaded from a 

server. If they are to be requested again, the cache will return them in a transparent way 

in order to minimize the query processing time. At least two different event types can 

occur in the cache. When a looked up item is found within the cache, it is called a cache 

hit; otherwise, it is a cache miss. A semantic cache allows the cache to be used even 

though some of the data are not available in the cache. Therefore, the input query will 

be divided into two sub-queries: one to retrieve data from the cache and one to be sent 

to the server to retrieve the missing data. Therefore, using semantic caching allows the 

size of the data transferred between the cloud and the mobile device to be reduced.  

Fig. 1. 3-tier mobile cloud database architecture 

To solve this optimization problem in an environment where data locality matters, 

we propose a 3-tier architecture (Fig. 1) and apply it to a user case of medical applica-

tions. Indeed, we can imagine that during a meeting, a hospital director wants to access 

some doctor information items and projects. To do this, he/she uses a tablet (mobile 

device) and builds the query with the user interface provided by the application in-

stalled on it. The hospital owns some private data, such as the doctor's identity, and 

stores it on a server infrastructure with physical limitations. This static infrastructure is 

called the data owner. Some of the information is not considered private, such as this 

meeting’s date and time with the director, and can be stored on elastic infrastructures 

on the cloud called cloud providers. Those services can answer to the real need in 

computing resources or storage resources for the hospital. The data owner can access 

those services. 

With the proposed architecture, our goal is to solve the following research question: 

How can we process fast queries from a mobile device while respecting the user con-



straints on query execution time, energy consumption and monetary cost? More partic-

ularly, how can we use the cache system to estimate whether it is more profitable to 

process the query on the mobile device or on the data owner/cloud servers? The key 

contribution of this work is the development of a second cache on the mobile device 

called estimation cache working with the semantic query cache. The rest of the paper 

is organized as follows: Section 2 discusses the background and related work; Section 

3 presents the proposed algorithm, called MOCCAD-Cache; Section 4 presents the ex-

perimental results evaluating the performance of the proposed solution; and finally, 

Section 5 concludes the paper and suggests future work. 

2 Background and Related Work 

[3] and [4] offered a formal definition of semantic caching which consists of three 

key ideas. Firstly, semantic caching contains a semantic description of the data con-

tained in each cache entry such as the query relation, the projection attributes and the 

query predicates. This semantic description is used to designate the data items con-

tained in the corresponding entry and to know quickly if the entry can be used to answer 

to the input query. Secondly, a value function is used for cache data replacement. For 

example, if the chosen value function is time, we can choose to replace the oldest en-

tries. Finally, each cache entry is called a semantic region and is considered as the unit 

for replacement within the cache. It stores the information concerning the results of a 

query: a list of projection attributes, a list of query constraints (predicates), the number 

of tuples for this region, the maximum size of a tuple, the result tuples and additional 

data used to handle data replacement within the cache. When a query is processed, the 

semantic cache manager analyses the cache content and creates two sub-queries: a 

probe query to retrieve data in the cache; and a remainder query to retrieve the missing 

data from the database server. [4] and [5] define the notion of query trimming which 

corresponds to the cache analysis, necessary to split the input query into a probe query 

and a remainder query. More recently, other contributions have been added to this area 

[6], [7] and [8]. However, even though their contributions improve the performance of 

the query trimming algorithm, the version in [4] provides much more accuracy towards 

its implementation. During this query trimming algorithm, four types of event can oc-

cur: cache exact hit and cache miss as explained previously, as well as cache extended 

hit and cache partial hit added by the semantic caching definitions. 

Cache Extended Hit. There are several types of cache extended hit: the result of the 

input query is included inside one of the regions in the cache (Fig. 2.a); the result of the 

input query needs to be retrieved from several regions in the cache (Fig. 2.b); and the 

input query and the semantic region’s query are equivalent (Fig. 2.c). Thus, if we re-

trieve the semantic region’s query result, we also retrieve the input query result.  

Cache Partial Hit.  Part of the query result can be retrieved from the cache with a 

probe query, but another part needs to be retrieved from the database server with the 

remainder query. For example, with the input query as 𝜎𝐻𝑅≥57(𝑁𝑂𝑇𝐸) and our exam-

ple’s cache content shown in Fig. 3, query (3) can be used to retrieve only a part of the 



query result. Therefore, all the tuples corresponding to the remainder query 

𝜎𝐻𝑅>57(𝑁𝑂𝑇𝐸) would be downloaded from the database server. 

 

In order to demonstrate the performance of semantic caching for a server in ideal 

conditions, [3] and [9] compared this type of caching with page caching and tuple cach-

ing. For page caching, when a query is posed at the client side, if one of the pages 

(statically sized transfer unit) has not been found, then all the data corresponding to the 

page will be obtained from the server. For tuple caching, the unit is the tuple itself. This 

type of caching has good flexibility but a huge overhead in terms of performance. More 

recently, [10] showed the performance of semantic caching for types of applications 

requiring important workloads and using a limited bandwidth environment.  Their re-

sults support our choice of semantic caching inside our Mobile-Cloud environment as 

a good way to reduce the overhead in query processing time. [11] and [12] studied 

semantic caching performance in a mobile environment and mainly focuses on location 

dependent applications to emphasize how useful semantic caching can be in such an 

environment. 

Semantic caching, however, can create some overhead in several cases. This over-

head has not been considered, mainly due to the assumption made in the previous works 

that it is always more efficient to process a query on the mobile device’s cache rather 

than on the cloud. For many years, the bandwidth and the resources provided by the 

server disallowed one to even think about using the server to process the query when 

the result is already close to the user. However the power of cloud computing changes 

the game’s rules. Several estimations now need to be computed in order to determine 

where the query should be processed in order to meet the user’s constraints.  

3 Proposed Solution 

This section describes the processing time, energy consumption and monetary cost es-

timation computations as well as the proposed caching algorithm, MOCCAD-Cache. 

We assume that only selection queries are posed without any join operations. We also 

assume that no network disconnection occurs and that the database on the cloud is not 

altered. From the mobile device, only the data owner can be accessed. However, since 

we do not assume any difference between the data owner and the cloud servers while 

focusing on caching, the data owner and the cloud servers will be considered as one in 

our algorithm. 

 

𝜎𝐻𝑅<57(𝑁𝑂𝑇𝐸) (1) 

𝜎𝑎𝑔𝑒>28 ∧ 𝑎𝑔𝑒<32(𝐷𝑂𝐶𝑇𝑂𝑅) (2) 

𝜎𝐻𝑅=57(𝑁𝑂𝑇𝐸) (3) 
 

Fig. 2. Example: Cache Extended Hit Fig. 3. Example: Cache Content for Partial Hit 



3.1 Estimation Computation 

To compute the time and energy needed to process a query on the cloud, it is necessary 

to consider the time and energy needed to transfer the data between the mobile device 

and the cloud. To do this, we need to estimate the size of the query result sent back 

from the cloud. Then, knowing the bandwidth, it is possible to determine the time to 

download the data. [13] provided a formula to compute this size. The total time to re-

trieve the data from the cloud can be computed by adding the time to send the query to 

the cloud (negligible due to the small amount of data transferred), the time to process 

the query on the cloud, and the time to download the result. The estimated time and 

money to process a given query on the cloud are posed to the cloud services. 

From the query execution time, it is possible to estimate the corresponding energy 

consumption. Three different steps define query processing time on the mobile device. 

𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 is the time to compute the estimation (i.e. time to process the cache 

to determine the probe and remainder queries and compute their respective estima-

tions). 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒  is the time to process a query on the mobile device. 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑  

is the time to process a query on the cloud. Also, different steps described in [14] and 

[15] allow us to model the power consumption during the different activities and sus-

pended states on the mobile device. Here we use the electric intensity I in Amperes. 

𝐼𝑖𝑑𝑙𝑒  is the energy consumed when the mobile device is awake but no application is 

active (considered negligible). 𝐼𝐶𝑃𝑈 is the energy consumed when the mobile device 

processes a query on its cache. 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑙𝑜𝑤  is the energy consumed when the mobile 

device waits while the query is processed on the cloud. 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_ℎ𝑖𝑔ℎ is the energy con-

sumed when the mobile device retrieves the query results from the cloud. In order to 

know the amount of battery has been consumed, we need to determine the intensity of 

each component used in the previously defined states. The consumed energy amount 

allows us to quantify the amount of energy that we drain from the battery Q in Ampere 

Hours, which can be computed by multiplying I the current in Amps and t the pro-

cessing time in hours. Therefore, we can simplify the computation of the energy con-

sumption estimation by using only the electrical charge.  

 

𝑄𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐼𝐶𝑃𝑈 ×  𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛  (1) 

𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒 = 𝐼𝐶𝑃𝑈 ×  𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒  (2) 

𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑 = 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑙𝑜𝑤 × 𝑡𝑒𝑥𝑒𝑐_𝑞𝑢𝑒𝑟𝑦 + 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_ℎ𝑖𝑔ℎ ×  𝑡𝑠𝑒𝑛𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 (3) 

𝑄𝑡𝑜𝑡𝑎𝑙 =  𝑄𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒 + 𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑  (4) 

 

These time and the energy consumption estimations depend mainly on the type of 

event that occurred during query trimming. If a cache hit occurs, we consider that re-

trieving the query result is negligible in terms of time and energy consumption. We 

consider also negligible the processing cost in the equivalent extended hit case (Fig. 

2.c). The cases where a semantic region has to be processed (i.e. included extended hit   

or partial hit) can be a little bit more complex. The complexity of this type of evaluation 

depends mainly on the data structure used to store the tuples within the cache [16], as 

well as on the presence or not of indexes for the attributes that belong to the input query 



predicates [13]. In our proposed algorithm, the tuples are stored randomly in a contig-

uous list. It will therefore be necessary to check serially each tuple to see if it satisfies 

the input query predicate. The time corresponding to those operations can be deter-

mined statistically by processing queries on several segments of different sizes before 

any evaluation.   

3.2 Cache Managers 

The organization of managers presented in [17] is used for cache management which 

consists of three independent parts. The Cache Content Manager is used to manage the 

results inside the cache. It is used for insertion, deletion and look up. The Cache Re-

placement Manager is used to handle cache data replacement by some more relevant 

items. The Cache Resolution Manager is used to retrieve the data in the cache as well 

as to invoke some external tool to load the missing data items, for example. 

Also, we introduce three other types of managers to handle the computation of every 

estimation as well as the elaboration of a better solution. The Mobile Estimation Com-

putation Manager is used to compute the execution time and the energy consumption 

while executing a query on the mobile device. The Cloud Estimation Computation 

Manager is used to compute the time, the mobile energy consumption and the monetary 

cost necessary to process a query on the cloud. Finally, the Optimization Manager takes 

care of the choice between the mobile query processing estimation and the cloud query 

processing estimation while respecting the user constraints, such as the remaining bat-

tery percentage, the maximum query response time and the money to be paid to the 

cloud service providers for the query evaluation. Three cache structures, query cache, 

mobile estimation cache, and cloud estimation cache described below, are used to pro-

vide a solution for the given problem. However, each cache owns its content manager, 

replacement manager and resolution manager. 

Query Cache: This cache uses Semantic Caching [3] to store the results of the pre-

viously executed queries.  

Mobile Estimation Cache: This cache contains all the estimations corresponding 

to the query eventually processed on the mobile device. More specifically, it contains 

the estimated execution time and the energy consumption for the query result retrieval 

within the query cache.  

Cloud Estimation Cache: This cache contains all the estimations corresponding to 

the query if it is processed on the cloud. Even though an estimation is found in this 

cache, it does not mean that the corresponding query has been processed. For both es-

timation caches, only the events of cache hit and cache miss can occur.  

3.3 The MOCCAD Cache Algorithm 

The MOCCAD-Cache algorithm shown in Fig. 4 consists of 4 main steps corre-

sponding to the different phases occurring during a query processing algorithm: query 

cache analysis, estimation computation, decision making, and query evaluation. First 

we need to analyze the query cache in order to know what is usable to answer the input 

query. Then, depending on the result of the previous step, we may need to estimate the 



cost to process a query on the mobile device (processing time and energy consumption) 

as well as the cost (processing time, energy consumption and monetary cost) to process 

a query on the cloud. If we have to compute a mobile query processing estimation and 

a cloud query processing estimation, then we will need to make a decision upon those 

estimations and the user constraints in order to finally execute the query. 

MOCCAD Cache Algorithm: CacheManager::load 

Input: Query inQuery, QueryCache, MobileEstimationCache mobileEstiCache, Cloud-

EstimationCache cloudEstiCache, MobileEstimationComputationManager mobileECompM, 

CloudEstimationComputationManager cloudECompM, OptimizationManager oM. 

Output: Query Result. 

1:  mobileEstiResult ← ∞  

2:  cloudEstiResult ← ∞ 

4:  queryLookup,pQuery,rQuery ← queryCache.lookup(inQuery) 

5:  if queryLookup = CACHE_HIT then 

6:   mobileEstiResult ← 0 

8:  else if queryLookup = PARTIAL_HIT then 

9:   estiRemainder ← acquireEstimation(rQuery, cloudEstiCache, cloudECompM) 

10:  estiProbe ← acquireEstimation(pQuery, mobileEstiCache, mobileECompM) 

11:  mobileEstiResult ← estiRemainder + estiProbe 

12:   cloudEstiCache ← acquireEstimation(inQuery, cloudEstiCache, cloudECompM) 

14:  else if queryLookup = EXTENDED_HIT then 

15:   mobileEstiResult ← acquireEstimation(inQuery, mobileEstiCache, mo-

bileECompM) 

16:  cloudEstiResult ← acquireEstimation(inQuery, cloudEstiCache, cloudECompM) 

18:  else if queryLookup = CACHE_MISS then 

19:  cloudEstiResult ← acquireEstimation( inQuery, cloudEstiCache, cloudECompM) 

20:  end if 

22:  bestEstimation, queryPlan ← oM.optimize(queryLookup, mobileEstiResult, 

cloudEstiResult) 

23:  if bestEstimation != NIL then 

24:   queryResult ← queryCache.process(queryPlan) 

25:   queryCache.replace(queryResult, queryPlan) 

26:  end if 

 

acquireEstimation Function: 

Input: Query query, EstimationCache estimationCache, EstimationComputationManager 

estimationCompManager 

Output: Estimation estiResult. 

1:  estiLookup ← estiCache.lookup(query) 

2:  if estiLookup = CACHE_HIT then 

3:   estiResult ← estiCache.process(query) 

4:  else 

5:   estiResult ← estimationCompManager.compute(query) 

6:   estiCache.replace(query, estiResult) 

7:  end if 

8:  return estiResult 

Fig. 4. MOCCAD-Cache Algorithm and acquireEstimation Function 

First of all, in order to estimate a query processing cost, it is necessary to determine 

how much time and energy will be spent to analyze the query cache. The algorithm in 

[5] can be used to analyze two queries in order to know if they are equivalent or if one 

implies the other. This algorithm can be very expensive regarding the number of pred-

icates contained in both the input query and the query in the cache. In order to estimate 

the time and energy necessary to process this algorithm, it is essential to compute some 

statistics for the execution time and the energy consumption regarding the number of 

predicates to be analyzed. This should be done only once when the application is started 

for the first time on the mobile device. We assume that the mobile device has a suffi-

cient amount of energy to compute those statistics. Also, during the second phase of the 



estimation, we need some additional pre-processed data necessary to estimate the query 

processing cost on the mobile device. More specifically, we still need to download 

some metadata and information items from the database hosted on the cloud, which are 

required to estimate the size of the query result after we processed the query on it, such 

as relation name, number of tuples, average tuple size, etc. Those information items are 

downloaded once when the algorithm accesses the database. We assume that the data-

base on the cloud is never altered.  

This algorithm requires the query to be processed as an input. It needs three different 

caches: the query cache, the mobile estimation cache and the cloud estimation cache. It 

also uses the different managers for estimation computations and decisions. 

First of all, we analyze the query cache (Line 4 in MOCCAD-Cache Algorithm). 

The query cache calls its content manager which will return 3 different items: the type 

of cache hit or miss, the probe query and the remainder query. Secondly, the estimation 

computation is made regarding the query analysis result (Line 5 to Line 20 in 

MOCCAD-Cache Algorithm). In the case of a query cache exact hit (CACHE_HIT), 

the query processing cost on the mobile device is considered negligible. Therefore, the 

query will be directly executed on the mobile device to retrieve the result. In the case 

of a partial hit (PARTIAL_HIT), it is necessary to estimate the processing time to pro-

cess the probe query on the mobile device as well as the cost to process the remainder 

query on the cloud. Those two estimations need to be added to get the estimated cost to 

retrieve the complete result. Additionally, we need to compute the estimated cost to 

process the whole input query on the cloud. To acquire such estimations we use the 

acquireEstimation function. This function looks for those estimations in the cloud or 

mobile estimation caches (Line 1 in acquireEstimation Function). If they are not avail-

able in those caches, then the estimation is computed by the estimation computation 

manager. Then, the estimation cache calls its replacement manager to insert the new 

estimation into the cache (Line 4 to Line 6 in the acquireEstimation function). This 

way, even though the query is not executed, the estimation still belongs to the cache. 

This works the same way for both the cloud estimation cache and the mobile estimation 

cache. In the case of a cache extended hit (EXTENDED_HIT), it can be very expensive 

to process the query on the mobile device; it is therefore important to compute the es-

timation before this execution. Additionally, we estimate the costs regarding the exe-

cution of the query on the cloud in order to decide whether the query should be executed 

on the mobile device or on the cloud. Finally, in the case of a cache miss 

(CACHE_MISS), the algorithm computes the costs to process the query on the cloud to 

be sure they respect the user constraints. 

Once the estimations have been computed, it is now possible to make a decision on 

where the query should be processed and then build the query plan (Line 22 in 

MOCCAD-Cache Algorithm). If it is possible to process the query while respecting the 

execution time, energy consumption and monetary cost constraints, then the query 

cache (QueryCache) calls its resolution manager to process the generated query plan 

and returns the result (Lines 23 to 26 in MOCCAD-Cache Algorithm). The execution 

time, the estimated energy and the money spent will be updated in the estimation caches 

to contain the real values. Then, we use the query cache’s replacement manager to re-

place the data within the query cache. If some segment should be removed from the 



query cache, the corresponding estimation will be removed from the mobile estimation 

cache. We cannot keep this estimation since it is based on the current segment on which 

the result can be retrieved. If this segment is replaced by another one requiring less 

processing cost than the first one to retrieve the result, then the estimation is not accu-

rate anymore. However, another possible solution could be to store this estimation else-

where for replacement purposes. Finally, after the replacement, the query result is sent 

to the user. 

4 Experiments and Results 

The MOCCAD-Cache algorithm and all the associated algorithms [5] and [4] have been 

implemented on Android Kit Kat 4.4.3. The experiments have been run on a HTC One 

M7ul embedding a Qualcomm Snapdragon 600 with a 1.728 GHz CPU, 2GB of RAM 

and a battery capacity of 2300 mAh. On the cloud side, a private cloud from the Uni-

versity of Oklahoma has been used. It uses one node with the following configuration: 

16GB of RAM, Intel Xeon CPU E5-2670 at 2.60 GHz. A Hadoop framework (Version 

2.4.0) as well as the data warehouse infrastructure, Hive, have been used for this exper-

imentation. This cloud infrastructure can be accessed through a RESTful web service 

running on a tomcat server (Version 7.0). The web service can ask the cloud to estimate 

the cost of a query and to process a query on the cloud infrastructure using HiveQL. It 

can also return the metadata items related to the stored relation(s) using Hive Metastore. 

This Hive Metastore uses a MySQL Server (Version 5.1.73) to store the metadata. A 

200,000 tuples relation is stored on HDFS and gathers 6 uniformly distributed attrib-

utes: ExpTable(bigint Id [200,000 values], string Name, string Info, int IntAttr1 [10,000 

values], int IntAttr2 [50,000 values], int IntAttr3 [100,000 values]). 

In order to study the performance of the MOCCAD-Cache in each case where we 

can use some results from the cache, the different experiments aim to measure the total 

query processing time, the total monetary cost and the total energy consumption for 

each percentage of exact hits, extended hits and partial hits on the query cache. This 

experiment is made on a query processor without cache, a query processor with a se-

mantic cache, and a decisional semantic cache (MOCCAD-Cache). For each experi-

ment, three runs have been done in order to minimize the environment noises such as 

Wi-Fi throughput variations, cloud computation time variation, and mobile processing 

time variation. Each run gathers 50 queries. The cache is warmed up with 10 segments 

storing from one tuple to 100,000 tuples. No cache replacement is used.  

The experiment results show that the query processing time, the energy consumption 

and the monetary cost regarding the percentage of exact hits are similar between se-

mantic caching and MOCCAD-Cache. This shows that our estimation cache prevents 

any overhead that could be caused by the estimation computation. Regarding the per-

centage of extended hits, when no cache is used, the query processing time (Fig. 5) 

decreases regarding the total result size of the used query sets. When MOCCAD-Cache 

is used, more queries are processed on the cloud compared to semantic caching. There-

fore, the different estimations and decisions occurring when using the MOCCAD-

Cache determine that it is more efficient to process a query on the cloud rather than on 



the mobile device. Thus, our MOCCAD-Cache algorithm is faster than semantic cach-

ing. However, more money is spent on the cloud since more queries are processed on 

it (Fig. 6). When a money constraint is added, our algorithm can prevent too expensive 

queries from being processed. Therefore, the number of queries not meeting the con-

straints is reduced with our algorithm compared to semantic caching which does not 

take into account any of the user constraints. 

 

Fig. 5. Processing Time for Fifty Queries Regarding Cache Extended Hit Percentage 

 

Fig. 6. Monetary Cost for Fifty Queries Regarding Cache Extended Hit Percentage 

Regarding the partial hit percentage, our algorithm performs similarly to semantic 

caching. When the cloud can perform queries quickly with a high number of cloud 

instances, the estimated time and energy are mainly related to the download time and 

the size of the query results. Thus when a decision needs to be made, the algorithm 

chooses to process the query retrieving the smallest amount of data. This corresponds 

to the query plan which processes the probe query on the mobile device and the remain-

der query on the cloud. This query plan is identical to the one used in semantic caching 

and thus, no improvement is being made. 

Finally, our algorithm is validated by showing the impact of MOCCAD-Cache on 

the query processing time and the monetary cost (Fig. 7). We compare our solution with 



semantic caching. Those results correspond to the total of the previously presented re-

sults. Thus each value of time and monetary cost corresponds to 150 processed queries 

with the same percentage of exact hit queries, extended hit queries and partial hit que-

ries. The most significant and relevant values are presented. Fig. 7.a shows that the 

query processing time is globally reduced when we use MOCCAD-Cache. Fig. 7.b 

shows that the user will however need to pay the price of this improvement in terms of 

time. Once again, the small difference in time and money cost between semantic cach-

ing and our algorithm is due to the small cloud that has been used (only 5 instances). 

Additional work would be required to process the same experimentation on a bigger 

cloud (with more instances) to really emphasize this difference.  

 

  
(a) (b) 

Fig. 7. Global Impact of Cache Hit Percentage on the Query Cost 

5 Conclusion and Future Work 

In this research, we have proposed a time, energy and money cost-aware semantic 

caching algorithm called MOCCAD-Cache for a 3-tier mobile cloud database architec-

ture. MOCCAD-Cache can estimate the time, energy and money to be spent for a given 

query when it is processed on the cloud or when it is processed on the mobile device. 

This way, it can decide which query plan is the best considering the user constraints in 

terms of query processing time, energy consumption and monetary costs, and is an im-

provement over semantic caching because it can perform queries faster in a Mobile-

Cloud database environment. However, the user would have to pay more monetary cost 

consequently.  

MOCCAD-Cache is the first decisional semantic caching algorithm for a Mobile-

Cloud database system. This first step of optimization and decision making within a 

caching algorithm on the mobile device needs many expansions and opens many pos-

sibilities. A future step aims at handling several cloud providers and chooses to process 

a query only on the services where it is the least expensive regarding the user con-

straints. 
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